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Abstract 

The finite difference and finite element matrix equations are developed for 
linear thermoviscoelastic materials. The equations are derived for a general three- 
dimensional body, but are applicable upon trivial changes to one- and two- 
dimensional configurations. A brief statement of the thermoviscoelastic field 
equations is followed by the development of the finite difference equations in 
time and then by the finite element formulation in space. Some attention is given 
to the experimental determination of material properties and their use in analytical 
work. An expansion of the experimentally or analytically determined material 
property functions in terms of exponential series leads to recurrence matrix equa- 
tions, eliminating the problem of recalculating at each time step the history of 
material response. As an example, the details of setting of the finite element 
equations are illustrated. 
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Finite Element Formulation for Linear 
Therm oviscoe I astic Mate ria Is 

1. Introduction 
The upsurge of the finite element technique in struc- 

tural and continuum mechanics during the last few years 
has given to the analyst a tool which provides the flexi- 
bility and the versatility necessary for the analysis of struc- 
tural and continuum problems with complex boundary 
conditions and complex configurations. A vast literature 
exists about the finite element technique and its applica- 
tion, mainly to elastic and plastic static problems and to 
some steady-state dynamic problems (e.g., Refs. 1 and 2) .  
However, the extension of this technique to viscoelastic 
problems without using the elastic-viscoelastic corre- 
spondence principle has been accomplished only in a 
few reIativeIy simple cases (e.g., Ref. 3). In Ref. 4, a short 
description of problems in the stress analysis of linear 
thermoviscoelastic solid propellants is given with a review 
of some related recent literature. It has been concluded 
that only for rather special cases can the elastic- 
viscoelastic correspondence principle be invoked, i.e., 
when the material properties are independent of thermal 
changes. Since the properties of most viscoelastic mate- 
rials are highly temperature-sensitive, it is concluded 
that the development of a general program should be 
based on the solution of integral equations in real time 
rather than on the elastic-viscoelastic correspondence 
principle. Such an approach using a finite difference 
technique in space and time has been applied recently 

in Ref. 5 to simple one-dimensional axisymmetrical 
problems. 

In this report the finite difference equations in time and 
finite element matrix equations in space are developed 
for general linear thermoviscoelastic problems. 

II. Governing Equations 

A. General Assumptions 

A region of space D + B with boundary B (Fig. 1) is 
assumed filled with a continuous medium of linear 
thermoviscoelastic material. The material may have a 
space- and time-dependent distribution of density and 
may be subjected at each point in D to externally im- 
posed quasi-static inertial forces per unit volume f j  (a, t), 
such as gravity forces, centrifugal forces, etc. In addi- 
tion, a known space- and time-dependent thermal field 
(uncoupled theory) 

exists in the medium in D + B, where T (xh ,  t) is the local 
instantaneous temperature, and To is a conveniently 
selected reference temperature for which the material in 
D + B is completely relaxed. 
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r, 
x 1  

Fig. 1. Region D 4- B with prescribed body forces f, ther- 
mal field 8,  boundary displacements U, and boundary 
tractions F referred to Cartesian coordinates x i  

At each boundary point in B, the boundary displace- 
ments uj(B) or the boundary tractions Pj(B) are pre- 
scribed. Thus, in Cartesian component form, the following 
displacement boundary conditions 

or, the following traction boundary conditions‘ 

are valid at each point in B, where ni denotes the com- 
ponents of the unit normal vector to B, u j  denotes the dis- 
placement components, and ~1 denotes the components 
of the stress tensor in D, as xh tends to a corresponding 
point in 33. 

The initial conditions are specified so that all mechani- 
cal field quantities, displacements, velocities, stresses, 
strains, etc., vanish for t < 0, and the temperature increase 
O ( x h , t ) = O  whent=O. 

8. Material Properties 

The constitutive property of the material in the region 
D f B may be anisotropic, but is assumed to be linear. 
The coefficients of thermal expansion a&, then represent 
a second-order symmetric tensor with six independent 
thermal expansion coefficients. The coefficients a& (T’) 

‘The usual summation convention in tensor theory is used for double 
indices unless indicated otherwise. 

may be functions of temperature, in which case it is con- 
venient to define average thermal expansiun co&cients 
crij (T) by the relation 

The mechanical properties of the material are charac- 
terized by the general anisotropic time-dependent relax- 
ation moduli E i j k l  (t) of the fourth-order material property 
tensor, which has the following symmetry properties, 

E.’ 23kl - - E . .  3lkl  - - E i j l k =  E k l i j  

0 

(5) 

and, therefore, has 21 independent components in the 
genera1 case. 

In the particular case of isotropy, the fourth-order 
tensor a n  be represented by two independent compo- 
nents, e.g., the bulk modulus K and the shear modulus G, 
while the thermaI expansion is characterized by the single 
expansion coefficient 01. The respective isotropic tensor 
components are then given by 

and 

01ij ( T )  = S i j  (Y (T)  

where 6 i i  is the Kronecker delta characterized 

fori = j 

for if; j 

A further assumption is that the material in the region 
D + B behaves in a thermorheologically simple way, 
showing, for changes of temperature, a pure shift in the 
characteristic functions, i.e., creep functions and relax- 
ation moduli, when these are plotted against the logarithm 
of time. To express thermorheologically simple behavior 
analytically (Refs. 6 and 7), a “reduced time” 5 is intro- 
duced by 

where a ( T )  is an experimentally determined time-shift 
function (Ref. 8) of temperature T,  only; its dependence 
on position xh and time t is implicit through T, and is in 

2 J P L  TECHNKAL R E P O R T  32-1381 



many cases well described by the Williams-Landel- 
Ferry (WLF) equation 

where Tg is the glass transition temperature and C, and 
C, are constants. 

Recent experimental work has shown that the shift 
function may also be a function of the applied stresses 
and the induced strains, and their time derivatives. A few 
simple examples of such nonlinear material behaviour 
have been discussed in Ref. 9. In the following develop- 
ment it is assdmed that a ( T )  is determined a priori and 
is only a function of temperature. Dependence on stresses 
and strains can be easily included, however, requiring only 
the step-by-step determination of the shift function after 
each time-step in the numerical computations, while the 
finite element formulation remains unchanged. 

For each relaxation modulus the following relation then 
holds, 

which states that the relaxation moduli at an arbitrary 
temperature T corresponding to time t are expressed by 
their values at a reference temperature To related to the 
new “reduced time” scale t (Fig. 2) .  

Similar to the well-known relationships between the 
various moduli for isotropic elastic materials, there exist 
corresponding relationships between the various moduli 
for isotropic linear viscoelastic materials. That is to say, 

In t 

Fig. 2. Relaxation modulus as a function of time for dif- 
ferent temperatures. If the relaxation modulus is  plotted 
vs the reduced time all curves will fall upon the single 
curve for T o  

if any two of the seven characteristic functions of isotropic 
materials, i.e., the extension modulus E (t) ,  and extension 
compliance F ( t ) ,  the shear modulus G (t) and shear com- 
pliance J (t), the bulk modulus K (t) and bulk compliance 
H (t), and Poisson’s ratio v (t), are known from experi- 
ment, the others can be determined analytically. 

In experimental work it is usually convenient to mea- 
sure F (t) and v (t) ,  where F (t)  gives the extension of a 
material specimen as a function of time under constant 
unit stress (Fig. 3). The tensile stress in the longitudinal 
direction results in a relative elongation of the longi- 
tudinal dimension + ~ ( t ) ,  and in a lateral contraction of 
the sample - E L  (t), both of which are related through 
v ( t )  in general by 

If the initial step elongation eo at t = 0 is held constant, 
Poisson’s ratio is simply determined by 

After F ( t )  and v(t) are determined, the compliances 
J (t) and H (t) can be computed using the following rela- 
tions (Ref. 6): 

J (t) = 2F (t) [l + v (O)] + 2 
(14) 

H (t) = 3F ( t )  [ 1 - 2v (O)] - 6 

( 15) 

CONSTANT FORCE 

Fig. 3. Determination of longitudinal strains E (fl, 
lateral strains €1 ,  and compliance F (tl 
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The shear modulus G (t) and the bulk modulus H (t) in 
Eq. (6) are then obtained from the following integral 
equations of the first kind: 

In the isotropic case one has then, similar to Eq. (ll), 
the relations 

For a discussion of various experimental techniques for 
the measurement of viscoelastic material properties, refer- 
ence is made, for example, to Ref. 10. 

C. Thermoviscoelastic Field Equations 

moviscoelasticity are 
The general field equations of quasi-static linear ther- 

(1) equilibrium equations, 

(2) strain-displacement equations, 

(3) and constitutive equations, 

where the argument [ f  (xa, t )  - .$‘ (xh, T ) ]  is obtained using 
Eq. (9). If one considers the assumed initial conditions 
and allows for the possibility of an initially induced step 
strain E ~ ~ ( ~ )  (xh) at t = 0, then Eq. (21) becomes 

The principle of virtual work states that at any time- 
instant t ,  the work done by the internal stresses in D 
when going through the arbitrary virtual strains is 
equal to the work done by the body forces f j  in D when 
going through the corresponding virtual displacements 
6uj, and by the boundary forces Pj(B) when going 
through the corresponding virtual boundary displace- 
ments 6uj (B). The principle of virtual work can be writ- 
ten immediately as 

Substituting Eq. (22) into Eq. (23) gives 

JD J B  

D. Incremental Field Equations 

necessarily equal intervals At,,) so that 
Starting at t = 0, the time axis is subdivided into not 

t ( m )  = At(,) + t(rn-1) 
From Eq. (9) one then obtains the corresponding “reduced 
time” intervals, 

((rn) = At(,) f t(rn-1) (26) 
from 

The corresponding field quantities at time t(,) are defined 
in terms of those at time t(m-l) and the associated incre- 
mental quantities by 
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With a substitution of the appropriate quantities of 
Eqs. (28) into Eqs. (19) and (20), it follows that the latter 
are identically satisfied also only for the increments, i.e., 

The virtual work equation, Eq. (23), at the time-instant 
t (m) is 

where for the arbitrary virtual strains and displacements 
the corresponding variations of the increments 6AeSj 
SAuj (m) ,  and 6Auj (B)cm) have been chosen. 

Substituting for a i j (m) ,  fj(m) and P j ( B ) ( m )  from 
Eqs. (28), Eq. (31) is identically satisfied also for the 
time-instant t(nb-l) and independently also only for the 
mth increments. 

The stress at t (n)  follows from Eq. (22) as 

With the following approximation at t (m),  

the integral in Eq. (32) can be approximated by a sum- 
mation as follows: 

Now, with a substitution of Eq. (34) into Eq. (31), Eq. (31) can be rewritten for t(n) in the following form: 

J B  J D  nk=1 

ill. Element Equations 

section. It is convenient to write Eq. (35) in matrix notation, using the following substitutions: 
'She virtual work relation of Eq. (35) is the starting point for the development of the finite element equations in this 

Eq. (34) then becomes, 
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and Eq. (35) becomes 

J B  J D  9n= 1 

J D  m= 1 J D  

The entire domain D is now divided into subdomains 
(finite elements) which are connected to each other at 
nodal points (Fig. 4). In each subdomain a local rectangu- 
lar coordinate system is conveniently located. For in- 
stance in the Tth subdomain Dr, located at vector position 
{rr} with respect to the global coordinate system 
(xl, t, xs),  the local coordinate system (zi, xi ,  x:) is shown 
in Fig. 4. The local position vector, {z'} and the global 
position vector {x'} of a point in D, are related to each 
other by a coordinate transformation of the form 

{x'} = [C'] { z r }  + {r'} (40) 

where [ Cr]  is the orthogonal coordinate transformation 
matrix involving the direction cosines between the coordi- 
nate axes. In many cases it is convenient to let the local 
and the global coordinate systems be the same; and the 
following developments will be restricted to these cases, 
with the realization that the generalization of the follow- 
ing results requires only elementary transformation in- 
volving [Cr]  and {r'} in Eq. (40). 

In the Zth subdomain DI, a displacement field is 
assumed of the form 

where the ~p:,, are assumed functions of position which 
are to be chosen so that compatibility at the boundary 
between adjacent elements is preserved. The time func- 
tions q:p) ( t )  are the unknown generalized coordinates 
of which there are as many associated with an element 
as there are nodal displacement degrees of freedom. The 
number of terms in the series in Eq. (41) is therefore a 
function of the type of element and its number of nodal 
points. 

Equation (41) can be written in the form 

and the corresponding increment at time t(n) is 

The incremental nodal displacements of the Zth ele- 
ment are equal in number to the generalized coordinates 
and at t(n) are 

{AUr,} = [@'I {As',} (44) 

in which the matrix [VI is formed by successively intro- 
ducing each nodal point coordinate in Eq. (43). The 
matrix elements in Eq. (44) are, thus, not functions of 
xh. Solving for {As:,} gives 

{Aq',} = [@'I-' {AU',} (6) 

With the use of Eqs. (30) and (41), the column of incre- 
mental strain components in the Zth element at t(n) can 
be expressed in terms of the generalized coordinates as 
follows, 

where the elements of the rectangular matrix [$'I are 
functions of involving the Cp:,, and their derivatives. 

With Eqs. (45) and (46) the strain increments, in terms 
of the increments of nodal displacements, become 

{AeJ = [VI [@'I-' IAU',> (47) 

It can be similarly shown that the initially induced strains 
{ E ; } ,  in terms of the initially induced nodal displace- 
ments {Vi}, become 

{E',> = 19'1 [@Y {u;> (48) 

When Eq. (45) and the transpose law for matrix products 
are used, the transpose of the variation of the incremental 
strain components in Eq. (46) becomes 

T T T  T 
{SA€',} = {SAU',} [@'I-' [9'] (49) 

6 JPL TECHNICAL REPORT 32- 1387 



Fig. 4. Typical subdomains (finite elements) with local coordinate systems and nodal forces referred 
to the global coordinate system 
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If {Pi} is the column matrix of the nodal force components for the Zth element (Fig. 4) then, from Eq. (39) with 
Eqs. (43), (47), (48), and (49), one obtains for the Zth element as the domain of integration 

The following quantities are defined: 

Interchanging integration and summation in Eq. (50), one 
obtains with Eqs. (51) to (54) the element equations in the 
following form: 

n i = n - 1  

Ip:} = [K. ,  ,I {AUl,} +- z ER..,-,I {AV, , )  
nl z 1 

+ [K:~I {UA> -nY{Ti.ni.l} - {FL> (55) 
nl = 1 

At time t = 0, Eq. (55) becomes, 

+ 

Equation (55) gives the unknown nodal force vector 
{Ph} for the Zth finite element at time 

in terms of the initial element nodal displacements {U;}, 
the subsequent element nodal displacement increments 
{AUf,} at time t(m), the thermal field quantities, and the 
body force quantities. With the exception of the element 
nodal displacements {Uh} and {AU:, } , all quantities on 
the right hand side in Eq. (55) are known initially at t = 0. 

IV. System Equations 
In the previous section, only a single finite element was 

considered. In this section an arbitrary number of N such 
elements will be assembled, constituting the entire system 
of elements into which the region D was subdivided. Thus, 
it follows that 

(57) 

The N sets of uncoupled element equations, Eq. (55), can 
be ordered and written in the following form: 
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To interconnect the discrete finite elements, equilibrium 
conditions and compatibility conditions are imposed at 
the nodal points. If the externally applied forces at the 
nodal points, Fig. 5, of the interconnected system, i.e., at 
the system nodal points, at time t ( , )  are put in the vector 
form, {Fn}, then equilibrium requires that at each system 
nodal point the sum of the internal forces, i.e., the nodal 
forces at the element nodal points interconnected at the 
system nodal points, equals the externally applied force 
at that point. To this end a connectivity matrix or assembly 
matrix [A] is formed, which, when premultiplying {Pn}, 
gives {F,}. Thus, 

[AI {P,} = {fin) 

(60) 
The same relation, of course, also holds 
for time t = 0, i.e., 

[AI {Po> = {Fo} 

Here, the assembly matrix [A] is the so-called Boolean 
matrix consisting of only zero and unit elements corre- 
sponding to the interconnected elements and points. 

It can now be shown that the incremental displacements 
at t ( , )  at the nodal points of the individual elements and 
of the assembly, i.e., the element nodal displacements 
{AU,}, and the system nodal displacements { nu,}, respec- 
tively, are related as follows: 

And similarly at time t = 0, 

T -  

[AI {Ud = w o >  

TYPICAL EXTERNALLY 
f APPLIED FORCE 

TYPICAL EXTERNALLY 
APPLIED FORCE 

Substituting Eqs. (61) into Eq. (59) and using both 
parts of Eq. (60) gives the forces applied externally to the 
system at the system nodal points, 

in = i 

A certain number of the system nodal displacements 
are restrained to follow a certain prescribed path in space 
and time (including zero displacements, as, for example, 
for unmovable supports). These displacement conditions 
must be imposed on the displacement vector, 

{u,} = {U,} + ny {Au,} (63) 
i n = ]  

Thus, the values of the prescribed nodal displacements 
at each time-instant t ( , )  are known, hence, their incre- 
ments are also known. The unrestraint system nodal dis- 
placements then become the unknowns. If {nun} is the 
vector of only the unknown incremental system nodal 
displacements, then these are related to all the incre- 
mental system nodal displacements, including the pre- 
scribed ones, by a boundary condition matrix [B] in the 
foIlowing form: 

I [Bj {Af ,}  = {ADn) 

and for t = 0, 

[BY {go} = {no} 
The forces of restraint which ensure the prescribed 

nodal displacements are unknown external nodal forces 
(supporting forces), while all the othsr nodal forces are 
known externally applied forces. If {F,} is the vector of 
all known forces applied to the system nodal points, then 
these can be expressed, in terms of aZZ the nodal forces 
including the unknown ones, in the following form: 

and for t = 0, (65) 
Fig. 5. Assembly of finite elements 
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Substituting now Eqs. (64) into Eq. (62) and using Eq. (65) gives the vector of the known forces applied to the 
system nodal points, 

for n =  1,2,3, . * . . 
Also, 

for n = 0, Le., at t = 0. 

Equation (66) can be solved for the unknown incremental system nodal displacements at t(n,, 

and the following terms for t = t(l), t ( 2 ) ,  t(3), . are, from - [BI [AI [&o] [AT [BT {ACi} 

+ fB1 {T3,0} + LB1 CAI {F3}) (71) 

(69) 
Equation (67) is written in the form of a recursion equa- 

tion, where the incremental displacements of the system 
at time t fn)  are expressed in terms of all the previous incre- 
mental displacements, the applied loads, and the applied 
thermal field. Using Eq. (67), it is necessary at each incre- 
mental time-step to go back and start the computation a€ 
time t = 0, as is evident from the summation terms. This 
usually leads to excessive computational work if results 
for relatively long durations of time are sought. Such 
computational work can be reduced in many cases, how- 
ever, if certain assumptions are made for the material 
property matrix [E], as will be shown in the next section. (70) 

10 JPL TECHNICAL REPORT 32-1381 



= 3 

After the displacement increments {AU,} and {U,} are 
determined, the element nodal displacements {AU,} and 
{U,) can be computed using Eqs. (64) and (611, 

and for t = 0, (72) 

To obtain the nodal displacements for the Zth element 
only, Eq. (72) is premultiplied by a rectangular matrix 
[Ir] which contains only unit or zero elements and which 
selects only the Ith element nodal displacements. Thus, 

{AU;} = [I1] [AT [BT {AGn} 

and for t = 0, j (73) 

j (74) 

y. - 
{Vi} = [Ir] [A? [Bl {eo} 

Substituting now Eqs. (73) into Eqs. (47) and (48) gives 
the incremental strains in the Ith element at time t(*f, 

{A€:} = [*,'I [@"I-' [Ir] [AT [BY {AEn} 

and at time t = 0, 
T -  

{E',} = [*'I [@'I-' [I'I [AT [BI {Go} 

and at time t = 0, 

Equations (75) and (76) provide the complete solution 
of the problem. Equation (76) is the elastic stress solution 
if the matrix [E' (O)] is assumed to be the elastic material 
property matrix. With this assumption, the second of 
Eqs. (74) is the elastic strain solution and the second 
of Eqs. (73) the elastic displacement solution. 

V. Viscoelastic Property Functions 

It has been mentioned that the solution of viscoelastic 
problems as expressed by Eqs. (67) and (68) often requires 
extensive computational efforts because of the recurring 
summations starting at time t = 0 for each incremental 
time-step. In linear viscoelasticity it is now possible, how- 
ever, to represent the components of the material property 
matrix in Eqs. (51), (52), and (53) by an exponential series 

of the following form: 

In these expansions the coefficients [E,] and the char- 
acteristic relaxation times 7,  are chosen so that experi- 
mental data or a particular discrete linear viscoelastic 
model are represented with sufficient accuracy. 

Assuming that within an elementary domain, e.g., DI, 
the thermal field is independent of the spacial coordinates, 
the first, second, third, and fourth term in Eq. (55) can 
then be represented, using Eqs. (51), (52), and (53), 
respectively, in the following form: 

P r n  m 
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If one defines 

then one can write 

which yields the recursion equation 

Similarly, if one defines 

then one obtains the following recursion equation: 

When one recognizes that 

and defines 

[d',] = [@$-I [+< [E',] dDr (91) 
DI 

then Eqs. (78) to (81) become, respectiveIy, 

[K',,n-11 { ~ u i >  = [&I {AUi> 
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and 

When Eqs. (93) to (96) are substituted into Eq. (55), all 
subsequent developments in the previous sections apply 
as shown; however, it can be seen from Eqs. (94) to (96) 
that at each time-step the evahation of the associated dis- 
placement increments requires information from only the 
immediate previous time-step by virtue of the recursion 
equations, (84) and (86). 

VI. An Illustration 
For the detailed determination of the matrices in 

Sections 111 and IV, it is well to illustrate here the 
matrix development steps for a simple but typical two- 
dimensional example. 

A typical triangular element I is shown in Fig. 6. The 
displacement field in the element is assumed to be a linear 
function of space. Equation (41) then becomes, in this case, 

hence the rectangular matrix in Eqs. (42) and (43) is 

1 1 x : x ;  0 0 0 

0 0 0 1 x ; x ;  
[O'I = 

Equation (43) is then 

(99) 

Introducing successively each nodal coordinate from 
Fig. 6 into Eq. (99) gives the rectangular matrix in 
Eq. (44) as 

0 0 0 1 
1 ai b: 0 0 

b', O l  
1 a ; b j O  0 0 

0 0  0 1 a ; b ;  
[a'] = 

Similarly, substituting Eq. (99) into Eq. (30) and using 
Eq. (46) gives the rectangular matrix in Eq. (46) as 

0 1 0 0 0 0  

0 0 0 0 1 

0 0  34 0 y2 0 

The matrices Eqs.(98), (loo), and (101), together with the 
material matrix [E'], the thermal matrix  as)',.}, and 
the body force matrix {fi} are sugcient to generate the 
element matrices Eqs. (51) to (56), hence, Eq. (58). 

It is now necessary to specify the particular system 
(assembly of elements) under consideration and to give the 
loading and supporting conditions. In the system used 
here as an illustration (Fig. 7) 3 elements and 5 nodal 
points are shown as well as the loading and supporting 
conditions. 

The construction of the assembly matrix [A] is accom- 
plished by writing the equilibrium conditions at each 
nodal point. Thus, at time t(n), 
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where the supporting forces at nodal points 1 and 3 are unknown while the applied force at nodal point 5 is known. 
From Eq. (102) the assembly matrix A in Eq. (60) can be constructed in the following form: 

u; = o  

e 

[AI = 

- 1 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  
0 1 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0  1 0  0 0  1 0  0 0  0 0  1 0  0 0  0 0  

0 0  0 1 0 0  0 1 0 0  0 0  0 1 0 0  0 0  
0 0  0 0  0 0  0 0  0 0  0 0  0 0  1 0  0 0  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 1 0 0  

0 0  0 0  1 0  0 0  0 0  1 0  0 0  0 0  0 0  
0 0  0 0  0 1  0 0  0 0  0 1 0 0  0 0  0 0  

0 0  0 0  0 0  0 0  1 0  0 0  0 0  0 0  1 0  

0 0  0 0  0 0  0 0  0 1  0 0  0 0  0 0  0 1  

I * * * x1 

Fig. 6. Typical triangular two-dimensional element 

All the incremental system nodal displacements at time 
t (%) can be written in terms of only the unknown system 
nodal displacements (see Eq. 64) as follows: 

{ACn} = 

The boundary condition matrix in Eq. (64) follows, then, as 

0 0  1 0  0 0  0 0  0 0  

0 0  0 1  0 0  0 0  0 0  

0 0  0 0  c 1  0 0  0 0  

0 0  0 0  0 0  1 0  0 0  

0 0  0 0  0 0  0 1  0 0  

0 0  0 0  0 0  0 0  1 0  

0 0  0 0  0 0  0 0  0 1  
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The steps of constructing the matrices [cp’], [a’], [VI, 
[A] and [B] in a problem are basically always the same 
as illustrated in this simple example. Three-dimensionaI 
tetrahedron elements require exactly the same formu- 

lation, the only addition being that of one dimension, 
Extensions to shells with curved elements, elements 
with intermediate nodal points, cubic elements, etc., are 
straightforward. 
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